Experimental Study of the Jet Engine Exhaust Flow Field of Aircraft and Blast Fences
نویسنده
چکیده
A combined blast fence is introduced in this paper to improve the solid blast fences and louvered ones. Experiments of the jet engine exhaust flow (hereinafter jet flow for short) field and tests of three kinds of blast fences in two positions were carried out. The results show that the pressure and temperature at the centre of the jet flow decrease gradually as the flow moves farther away from the nozzle. The pressure falls fast with the maximum rate of 41.7%. The dynamic pressure 150 m away from the nozzle could reach 58.8 Pa, with a corresponding wind velocity of 10 m/s. The temperature affected range of 40°C is 113.5×20 m. The combined blast fence not only reduces the pressure of the flow in front of it but also solves the problems that the turbulence is too strong behind the solid blast fences and the pressure is too high behind the louvered blast fences. And the pressure behind combined blast fence is less than 10 Pa. The height of the fence is related to the distance from the jet nozzle. The nearer the fence is to the nozzle, the higher it is. When it is farther from the nozzle, its height can be lowered.
منابع مشابه
A study of flow and initial stage of water condensation in the exhaust jet of the aircraft turbofan engine
The paper describes the results of numerical study of flow in the exhaust jet of turbofan engine CFM 56-3. Influence of computational domain decomposition, grid refinement and flow model on the jet flow field is discussed. Special attention is payed to simulation of nucleation and condensation processes in the exhaust jet. Growth of water clusters in the jet and cluster distribution in size are...
متن کاملLDA Experimental Data of Three-Poster Jet Impingement System
During its near-ground hovering phase a Short Take-Off and Vertical Landing (STOVL) aircraft creates a complex three-dimensional flow field between jet streams, the airframe surface and the ground. A proper understanding and numerical prediction of this flow is important in the design of such aircraft. In this paper an experimental facility, used to gather validation data suitable for testing C...
متن کاملNumerical Investigation of Flow Field of D87 Dual Fuel Engine
A newly developed heavy duty diesel engine in dual fuel mode of operation has been studied in detail. The main fuel would be natural gas and diesel oil as pilot injection. The importance and effects of mixture preparation and formation through ports, valves and in cylinder flow field with different swirl ratio and tumble on diesel combustion phenomena is an accepted feature which has been studi...
متن کاملIn-Trim Flight Investigations of a Conceptual Fluidic Thrust-Vectored Unmanned Tail-Sitter Aircraft
The feasibility of using a stand alone Fluidic Thrust-Vectoring (FTV) system for the purpose of longitudinal trim of an unmanned aerial vehicle is the focus of the research presented in this paper. Since the fluidic thrust vectoring requires high pressure secondary air to deflect the engine exhaust gases, this research also provides an analytical toolset for preliminary sizing of a suitable sec...
متن کاملExperimental and finite element vibrational analysis of exhaust manifold heat shield
Most of internal combustion engines have one or two heat shields that have been installed on the exhaust manifold to avoid the heat transfer to upper parts of the engine such as the valve cover. In some engines, this part fails due to the fracture and causes engine noise and other failures in the engine. In this paper, the failure of a heat shield due to vibrational loads of the engine has been...
متن کامل